Predicting Response to Neoadjuvant Chemoradiation in Rectal Cancer: Is It Still Out of Reach?

Khaled Madbouly, MD, PhD, FRCS, FACS, FASCRS, MBA Professor of Colorectal Surgery Department of Surgery University of Alexandria, EGYPT

Background

- The standard treatment of locally advanced RC is nCXRT followed by TME
- LR and toxicity were \$\overline\$ after nCXRT Vs. postop CXRT
 Sauer et al, N. Engl. J. Med. 2004
 OS wasn't significantly different

Sauer et al, J. Am. Soc. Clin. Oncol. 2012

Rational of Neoadjuvant CXRT

- Treat local micrometastatic disease
- Downstage tumor, increase probability of curative resection
- Decrease tumor cell dissemination during resection
- Patients more likely to complete prescribed treatment in preoperative period

Oncological effect

- When local recurrence was 15- 30%, old meta-analyses have shown nCXRT reduces LR by almost 50 %
- Dutch TME trial in rectal cancer reported a 10-year local recurrence cumulative incidence of 5 % in the group assigned to short course RT versus 11 % in the surgery alone van Gijn W,et al (2011) Dutch Colorectal Cancer Group. Lancet Oncol
- Didn't take into account the quality of the mesorectal excision
- None of the trials of RT alone (Peeters et al. 2007; Sebag-Montefiore et al. 2009) or nCXRT in the last decade had impacted on DFS or OS (Sauer et al. 2004; Bosset et al. 2006, Gerard et al. 2006; Roh et al. 2009)

Effect of the plane of surgery achieved on local recurrence in patients with operable rectal cancer: a prospective study using data from the MRC CR07 and NCIC-CTG CO16 randomised clinical trial

Phil Quirke, Robert Steele, John Monson, Robert Grieve, Subhash Khanna, Jean Couture, Chris O'Callaghan, Arthur Sun Myint, Eric Bessell, Lindsay CThompson, Mahesh Parmar, Richard J Stephens, David Sebag-Montefiore, on behalf of the MRC CR07/NCIC-CTG CO16 trial investigators and the NCRI colorectal cancer study group*

- With short course RT or post op CRT
- Node positive patients with defects in the mesorectum are likely to be at high risk of local recurrence
- Complete mesorectal excision7-8% local recurrence

(Quirke et al. 2009)

Late Effects of Radiotherapy

- Pelvic radiotherapy
 - ▶ 5–10 % of experiencing grade 3 or 4 late morbidity
- Effects on sexual functioning (Marijnen et al. 2005) Marijnen CA, et al. J Clin Oncol 2005
- Urinary incontinence (45 vs 27%)

Pollack J, et al. Dis Colon Rectum 2006

FI have been documented (61 vs 39% without RT) Lange MM, et al. Br J Surg 2007

Late Effects of Radiotherapy

- Swedish Rectal Cancer Trial
 - Bowel obstruction
 - Chronic abdominal pain

Birgisson H, et al (2006).J Clin Oncol

- There are also unexplained late cardiac effects (35 vs. 19%) Pollack J, et al. Dis Colon Rectum 2006
- Insufficiency fractures in the pelvis
 Herman MP, et al (2009) Int 1 Radiat (

Herman MP, et al (2009) Int J Radiat Oncol Biol Phys

- Dutch TME trial
 - Second malignancy in the RT arm Vs. TME arm alone (13.7 % versus 9.4 %)

van Gijn et al. 2011. Lancet Oncol

Findings were seen after only 11.6 years of follow up

Can Radiotherapy be Omitted?

Several groups have explored omitting radiotherapy when MRI suggests the tumour is easily resectable

This omission does not appear to increase the local recurrence rate

(Taylor et al. 2011, Frasson et al. 2011, Mathis et al. 2012)

Contents lists available at ScienceDirect

International Journal of Surgery

journal homepage: www.journal-surgery.net

Original research

Routine preoperative restaging CTs after neoadjuvant chemoradiation for locally advanced rectal cancer are low yield: A retrospective case study

INTERNATIONAL IOURNAL OF SURGER

建建

Jennifer S. Davids, Karim Alavi, J. Andres Cervera-Servin, Christine S. Choi, Paul R. Sturrock, W. Brian Sweeney, Justin A. Maykel^{*}

University of Massachusetts Medical School, Division of Colon and Rectal Surgery, Department of Surgery, Worcester, MA 01602, USA

- 96 patients,
- 91 patients (95%) completed neoadjuvant chemoradiation
- 83/91 patients (91%) had restaging CTs
- Four patients (5%) had new lesions suspicious for distant metastasis (2 lung, 2 liver)

Restaging after neoadjuvant chemoradiation in rectal cancers: is histology the key in patient selection?

Nitin Singhal¹, Karthik Vallam¹, Reena Engineer², Vikas Ostwal³, Supreeta Arya⁴, Avanish Saklani⁵

- PD tumors had a significantly higher:
 Local progression (32.1% vs. 5.6% %, P=0.0011)
 - Systemic progression (35.7% vs. 6.9%, P=0.0008) as compared to WMD tumors

Predicting response to nCXRT

International Journal of Surgery 23 (2015) 120-127

Contents lists available at ScienceDirect

International Journal of Surgery

journal homepage: www.journal-surgery.net

Original research

Is it safe to omit neoadjuvant chemo-radiation in mucinous rectal carcinoma?

Khaled M. Madbouly ^{a, *}, Abdrabou N. Mashhour ^b, Waleed Omar ^c

^a Department of Surgery, University of Alexandria, Egypt

^b Department of Surgery, University of Cairo, Egypt

- ^c Department of Surgery, University of Mansoura, Egypt
- 102 patients with mucinous AC
- nCXRT in 61 patients
- 48% partial response
- 42% no response
- 10% tumor progression

Is Neoadjuvant Chemotherapy an Alternative?

Chemotherapy alone

Table 1 Studies of neoadjuvant chemotherapy alone in rectal cancer							
Study	Key inclusion criteria	#pts	Treatment	pCR rate	Outcomes		
Ishii,	T3 or T4	26	Irinotecan, 5-FU,	3.8%	5-year DFS—74%		
<i>et al.</i> (35)			Leucovorin ×8 weeks		5-year OS-84%		
Uehara, <i>et al.</i> (36)	MRI-defined poor risk: T4, N2, CRM ≤1 mm, extramural invasion >5 mm	32	CAPOX, bevacizumab ×12 weeks	13%	R0 resection rate-90%		
Hasegawa, <i>et al.</i> (37)	T4 or N+	25	CAPOX, bevacizumab ×12 weeks	4%	R0 resection rate—92% DFS at 31 months—68%		
Cercek, <i>et al.</i> (38)	No radiation, resected primary	20	FOLFOX +/- bevacizumab	35%	N/A		
Schrag, <i>et al.</i> (39)	Т3	32	FOLFOX + bevacizumab ×8 weeks	25%	R0 resection rate—100% 4-year LR—0% 4-year DFS—84%		
nCB nathologic complete response: DES disease free survival: OS overall survival: CBM circumferential resection margin: LB							

pCR, pathologic complete response; DFS, disease free survival; OS, overall survival; CRM, circumferential resection margin; LR, local recurrence.

Journal of Gastrointestinal Oncology, Vol 5, No 5 October 2014

We must all suffer one of two things: the pain of discipline or the pain of regret or disappointment

JIM ROHN

SUNWARRIOR

You always have two choices: your commitment versus your fear. Sammy Davis, Jr. 📌 BrainyQuote"

oonse to nCXRT

AUTHOR OF THE 7 HABITS OF HIGHLY EFFECTIVE PEOPLE 15 MILLION COPIES SOLD

STEPHEN R. COVERS

'Stephen Covey's most important book' SETH GODIN, author of Linchpin

ALTERNATIVE

The

Solving Life's Most Difficult Problems

Is there anyway to predict response to nCXRT?

Potential Predictive Factors of the Response of Rectal Cancer to nCXRT

- Diffusion-Weighted 3 Tesla MR Imaging
- Molecular Biomarkers in Tumor Tissues
 - DNA Mutation and DNA Methylation
 - Gene Expression Profiles
 - Proteins and Metabolites
 - Tumor Immune Microenvironment
 - MicroRNA
- Biomarkers in Blood
 - Protein and Metabolites
 - MicroRNA
 - Circulating Tumor Cells (CTCs)
 - Circulating Cell-Free Nucleic Acids
 - Host Immune Response
 - Single Nucleotide Polymorphisms (SNPs)

MRI- DWI

The apparent diffusion coefficient (ADC) value of tissue water content acquired by diffusion-weighted MR imaging (DWI) provides information related to tumor cellularity and the integrity of cell membranes

Predicting Response to Neoadjuvant Chemoradiation Therapy in Locally Advanced Rectal Cancer: Diffusion-Weighted 3 Tesla MR Imaging

Se Hee Jung, MD,¹ Suk Hee Heo, MD,² Jin Woong Kim, MD,² Yong Yeon Jeong, MD,^{2*} Sang Soo Shin, MD,³ Min-Gyu Soung, PhD,⁴ Heong Rok Kim, MD,⁵ and Heoung Keun Kang, MD²

There is weak negative correlation between the mean ADC before neoadjuvant CRT and the percentage of tumor volume reduction

MRI- DWI

- Pretreatment ADC in locally advanced rectal cancer can help predict a successful response to nCXRT
- DWI on 3T MR imaging may help to predict and monitor the treatment response to nCXRT in patients with locally advanced RC

Curr Colorectal Cancer Rep (2017) 13:276–283 DOI 10.1007/s11888-017-0376-3

RADIATION THERAPY AND RADIATION THERAPY INNOVATIONS IN COLORECTAL CANCER (JY WO, SECTION EDITOR)

Biomarkers that Predict Response to Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer

Philmo Oh¹ · Kevin L. Du¹

- p53 protein mediates cell cycle arrest and cell death
- Inactivation of the p53 leads to survival of cells with damaged DNA
- p53 plays key roles in apoptosis, tumorigenesis and sensitivity to chemotherapeutic agents
- Malignant cells with wild-type p53 are sensitive, whereas mutated p53 malignant cells are resistant to radiotherapy and chemotherapeutic agents

Author	Pts. n.	Method	Treatment	Endpoint	Comment
Chang [32]	130	IHC	50.4 Gy	TRG	No correlation
			5-FU + LV		
Sturm [31]	66	IHC	45 Gy Heat shock	TNM downstaging	No correlation
			hyperthermia		
			5-FU + LV		
Lin [39]	70	IHC	$45 \text{ Gy} \pm 5\text{-FU}$	TNM downstaging	Lack of p53
					expression associated
					with poor response
Bertolini	91	IHC	50 Gy 5-FU	TRG	No correlation
[33]				TNM downstaging	
				DFS/OS	
Kudrimoti	17	IHC	50.4–59.4 Gy 5 - FU	pCR vs. PR	No correlation
[38]					
Jakob [36]	22	IHC	50.4 Gy 5-FU	TRG	No correlation
Terzi [30]	37	IHC	45 Gy 5-FU	TRG TNM	No correlation
				downstaging	
Negri [34]	57	IHC	$40-45 \text{ Gy} \pm 5\text{-FU} + \text{Oxa}$	pCR	No correlation
Moral [35]	30	ШС	42 Gy 5 FU + IV	TNM downstaging	No correlation
	20		42 Gy J = F U + L V		
Huerta [37]	38	IHC	50.4 G Capecitabine	Tumor size	No correlation

p53

- The majority of studies did not find any association between p53 expression and treatment response
- Lin et al. showed that absence of p53 protein in biopsy specimens obtained before radiation was a good predictor of poor response

Lin et al. Surg. Oncol. 2006

it seems unlikely that it could be used as a marker of response

EGFR

EGFR mediates signaling by activating KRAS
 It is involved in many cellular pathways, such as proliferation, apoptosis and differentiation

EGFR

Author	Pts. n.	Method	Treatment	Endpoint	Comment
Giralt [55]	87	IHC	45-50.4 Gy ±	pCR DFS/OS	EGFR expression associated
			5-FU + LV or	Metastasis-free	with decreased pCR rate
			UFT + LV	survival	
Kim [54]	183	IHC	50 Gy	TRG TNM	Low EGFR expression
			5-FU + LV	downstaging	associated with TNM
					downstaging
Spindler	77	PCR/DNA	65 Gy	TRG	EGFR Sp1-216 associated
[48]			UFT + LV		with tumor response
Spindler	60	PCR/DNA	65 Gy	TRG	Combination of TS 2R/2R
[49]			UFT + LV		and EGF 61A/G or EGFR
					Sp1-216T associated with
					tumor regression
Bertolini	91	IHC	50 Gy	TRG TNM	No correlation
[33]			5-FU	downstaging DFS/OS	
Toiyama	40	PCR/RNA	20 Gy	TNM	Low EGFR expression
[56]			5-FU + UFT	Grading	associated with high
					response rate
Bengala [58]	39	IHC, FISH	50.4 Gy 5-FU	TRG	High EGFR GCN and wild-
		PCR/DNA	+ Cetuximab		type KRAS associated with
					response to treatment
Debucquoy	41	IHC	50.4 Gy	TNM downstaging	No correlation
[57]			FU+LV	TRG	
Bengala [59]	146	ICH,	50 Gy 5-FU ±	TRG DFS/OS	No association of EGFR
		FISH	Oxa +		GCN and KRAS with TRG
		PCR/DNA	Capecitabine		and OS

- Conflicting results!!!
- Level of EGFR expression may be useful in the prediction of pathological response to CRT
- Additional studies are needed to clarify the role of EGFR in response CRT

Thymidylate Synthase

- TS is the primary intracellular target of 5-FU
- TS is involved in DNA synthesis
- In CRC, the overexpression of TS is associated with 5-FU resistance

Kuremsky, J.G et al. Int. J. Radiat. Oncol. Biol. Phys. 2009

TS

- **TS** expression and TRG:
 - Negri et al. demonstrated that a high TS level is predictive of a higher pathological response
 - Carlomagno et al. showed that rectal tumors with low TS expression associated with not obtaining a pCR
 - Jakob et al found low TS associated with good response
 - Many studies found no correlation between TS protein expression and response to CXRT

TS expression and prediction of response to nCXRT neoadjuvant radiochemotherapy in locally advanced rectal cancer patients.

Author	Pts. n.	Method	Treatment	Endpoint	Comment
Terrazzino [52]	125	PCR/DNA	45-50.4 Gy5-	TRG	No correlation
			FU or FU +		
			LV or FU +		
			Oxa or FU +		
			Carboplatin		
Bertolini [33]	91	IHC	50 Gy 5-FU	TRG TNM	No correlation
				downstaging	
				OS/DFS	
Spindler [49]	60	PCR/DNA	65 Gy	TRG	TS 2R/2R associated with
			UFT + LV		tumor regression
Jakob [36]	22	PCR/RNA	50.4 Gy 5-FU	TRG	Low TS expression
					associated with tumor
					regression
Stoehlmacher	40	PCR/DNA	50.4 Gy 5-FU	TRG	TS 3'-UTR 6 bp deletion
[47]		PCR/RNA			slightly associated with
					tumor response
Negri [34]	57	IHC	40-45 Gy ±	pCR	High TS expression
			5-FU + Oxa		associated with higher rate
					of response
Kikuchi [43]	60	IHC	45 Gy	TRG	Higher TS expression
			Irinotecan		associated with better
					response
Carlomagno	46	IHC	45 Gy	TRG	Low TS expression
[42]			Capecitabine		associated with low
			+ Oxa		response

Author (Reference)	Year	Number of Samples	Blood Collection	Cut off Values for CEA (ng/mL)	<i>p</i> -Value
Das et al. [92]	2007	562	pre-nCRT	≤2.5	p = 0.015
Yoon et al. [93]	2007	351	pre-nCRT	≤ 5	p = 0.004
Moreno Garcia et al. [94]	2009	148	pre-nCRT and post-surgery	≤2.5	p = 0.05
Kalady et al. [95]	2009	242	Not Reported	≤2.5	p = 0.19
Park et al. [96]	2009	352	pre and post-nCRT	≤3	p < 0.001
Lee et al. [97]	2009	490	pre-nCRT	≤ 5	p = 0.004
Kang et al. [98]	2010	84	pre and post-nCRT	≤3	p = 0.01
Aldulaymi et al. [99]	2010	33	pre-nCRT	≤ 5	p = 0.002
Yan et al. [100]	2011	98	pre-nCRT	≤3	p = 0.002
Hur et al. [101]	2011	37	pre-nCRT	≤3	p = 0.54
Moureau-Zabotto et al. [102]	2011	168	pre-nCRT	≤ 5	p = 0.019
Wallin et al. [103]	2013	267	pre-nCRT	≤3.4	p = 0.008
Restivo et al. [104]	2013	260	pre-nCRT	≤ 5	p = 0.001
Lee et al. [105]	2013	345	pre-nCRT	≤ 5	p = 0.002
Huh et al. [22]	2013	391	pre-nCRT	≤ 5	p = 0.002
Yeo et al. [106]	2013	609	pre-nCRT	≤ 5	p < 0.001
Yang et al. [107]	2013	138	pre-nCRT	≤ 6	p = 0.152
Wang et al. [108]	2014	240	pre-nCRT	≤ 5	p = 0.047
Zeng et al. [21]	2015	323	pre-nCRT	≤ 5	p = 0.007
Kim et al. [90] 2015		419	pre-nCRT	Not Reported	
Kleiman et al. [109]	2015	141	pre and post-nCRT	Not Reported	p = 0.003
Song et al. [91]	2016	1782	pre-nCRT	Not Repo	orted
Probst et al. [89]	2016	18,113	pre-nCRT	Not Reported	<i>p</i> < 0.001

Review

MDPI

Predictive and Prognostic Molecular Biomarkers for Response to Neoadjuvant Chemoradiation in Rectal Cancer

Delphine Dayde, Ichidai Tanaka, Rekha Jain, Mei Chee Tai and Ayumu Taguchi *

Author (Reference)	Year	Number of Samples	Specimens Collection	Biomarker Name	<i>p</i> -Value
Croner et al. [71]	2016	20	pre-nCRT	PLEC1, HADHA, TKT and TAGLN	Not Reported
Qin et al. [58]	2015	67	pre-nCRT	XRCC2	p < 0.001
Voboril et al. [67]	2016	50	pre-nCRT and post-surgery	NF-ĸB	Not Significant
Lee et al. [74]	2015	172	pre-nCRT	HSD17B2 and HMGCS2	p < 0.001
Chai et al. [73]	2016	172	pre-nCRT	VNN1	p = 0.001
Chao et al. [72]	2016	46	pre-nCRT	DSG3	p = 0.001
Ho et al. [59]	2016	54	post-surgery	ATM and MRE11	p = 0.011
Cebrian et al. [61]	2016	75	pre-nCRT	PLK1	p = 0.049
Zhu et al. [64]	2016	148	pre-nCRT	GOLPH3	p = 0.026
Yan et al. [60]	2016	105	pre-nCRT	PAF15	Not Reported
Zaanan et al. [70]	2015	96	pre-nCRT	Beclin 1	p = 0.02
del Puerto-Nevado et al. [62]	2016	67	pre-nCRT	VRK1 and VRK2	p = 0.004
Gomez del Pulgar et al. [65]	2016	73	pre-nCRT	FAK	p = 0.007
Ahmed et al. [66]	2016	43	pre-nCRT	FGFR4	p = 0.03
Peng et al. [69]	2016	82	pre-nCRT and post-surgery	APAF-1 and COX-2	p = 0.05
Li et al. [63]	2016	329	pre-nCRT	c-Myc, PCNA and TIMP1	Not Reported
Yu et al. [68]	2016	116	post-surgery	Survivin	Not Reported

Table 1. Tissue-based protein biomarkers for nCRT response in rectal cancer.

Proteomics? !!!

Any hope!!!

- Modest progress in identification of factors that may predict response to CXRT, whether it was molecular, serologic, immunologic, or radiologic features
- Examination of pre-operative characteristics lacked the sensitivity and specificity to be used in clinical practice
- All studies are limited by small sample sizes, and biologic heterogeneity of rectal tumors
 - > range of reported pCR rates despite similar neoadjuvant therapy

Conclusions

- None of the investigated biomarkers, pathologic or radiological features can be useful in clinical practice
- New technologies and approaches, such as microarrays, miRNA analyses and searches for circulating molecules, might provide new potential markers
- It is important that old and new biomarkers will be studied in larger, prospective trials that have the same staging, treatment and response criteria

Unless you try to do something beyond what you have already mastered, you will never grow.

Ralph Waldo Emerson

Thank You

